Mit Gravitationswellen die Dunkle Materie ausleuchten

Mit Gravitationswellen die Dunkle Materie ausleuchten
Zwei Zwerggalaxien mit jeweils einem schwarzen Loch stossen aufeinander und fusionieren zu einer. (Illustration: Thomas Tamfal / UZH)

Zürich – Schwarze Löcher stossen zusammen, Gravitationswellen breiten sich durch die Raumzeit aus – und ein riesiges Messgerät ermöglicht es, die Struktur des Universums zu erkunden. Dies könnte bald Realität werden, wenn die Raumantenne LISA ihren Betrieb aufnimmt. UZH-Forschende zeigen nun, dass LISA auch Aufschluss über die schwer fassbaren Partikel der Dunklen Materie geben könnte.

Dank der Laserinterferometer-Raumantenne (LISA) können Astrophysiker Gravitationswellen beobachten, die von Schwarzen Löchern ausgesendet werden. Diese Schockwellen entstehen, wenn Schwarze Löcher zusammenstossen oder sich gegenseitig schlucken. Das Weltraumprojekt LISA wird aus drei Raumsonden bestehen, die in einer konstanten Dreiecksformation um die Sonne kreisen und durch Laserstrahlen miteinander verbunden sind. Durchlaufen Gravitationswellen die Schenkel des Dreiecks, kommt es zu minimalen Verzerrungen des Laserstrahls, welche die Messgeräte erkennen und aufzeichnen. So wird LISA neue Erkenntnisse über das Universum ermöglichen und dazu beitragen, bisher unsichtbare Phänomene zu ergründen.

Zwerggalaxien sind natürliche Labore
Forschende des Zentrums für Theoretische Astrophysik und Kosmologie der Universität Zürich haben nun gemeinsam mit Wissenschaftlern aus Griechenland und Kanada aufgezeigt, dass LISA künftig nicht nur bisher unerforschte Gravitationswellen messen, sondern auch mithelfen könnte, das Mysterium der Dunklen Materie zu ergründen.

Es wird angenommen, dass die Partikel der Dunklen Materie etwa 85 Prozent der gesamten Struktur des Universums ausmachen. Die Existenz dieser Partikel ist aber immer noch hypothetisch – genau so wie deren Beschaffenheit noch immer im Dunkeln liegt. Berechnungen zeigen jedoch, dass viele der um sich selbst drehenden Galaxien auseinander gerissen würden, wenn sie nicht durch viel Dunkle Materie zusammengehalten würden.

Das gilt besonders für Zwerggalaxien. Diese kleinen, nicht sehr hell leuchtenden Galaxien kommen im Universum am häufigsten vor. Das macht sie für Astrophysiker zu natürlichen Labors für die Erforschung der schwer fassbaren Dunklen Materie.

Schwarze Löcher und Dunkle Materie sind verbunden
Wie die Forschenden in «Astrophysical Journal Letters» berichten, lieferten die hochauflösenden Computersimulationen von Tomas Ramfal, Doktorand am Institut für Computational Science der Universität Zürich, überraschende Ergebnisse zur Geburt von solchen Zwerggalaxien. Das Zürcher Forscherteam berechnete das Zusammenspiel von Dunkler Materie, Sternen und den zentralen Schwarzen Löchern innerhalb der Galaxien und entdeckte einen starken Zusammenhang: Je mehr Schwarzen Löcher miteinander fusionieren, desto grösser ist die Menge an Dunkler Materie im Zentrum der Zwerggalaxien. Die Gravitationswellen, die von diesen zusammenschmelzenden Löchern ausgesendet werden, könnten daher auch Hinweise auf die Beschaffenheit der hypothetischen Partikel der Dunklen Materie geben.

Diese neu gefundene Verbindung zwischen Schwarzen Löchern und Dunkler Materie wurde nun erstmals mathematisch beschrieben. Dies sei kein Zufallstreffer, betont Gruppenleiter Lucio Mayer von der Universität Zürich: «Dunkle Materie ist charakteristisch für Zwerggalaxien. Wir vermuteten daher schon lange, dass Dunkle Materie auch einen wichtigen Einfluss auf die Zusammensetzung des Kosmos hat.»

Vielversprechende Perspektive für künftige Missionen
Die Studie der Universität Zürich kommt zu einem Zeitpunkt, zu dem die Vorbereitungen für das endgültige Design von LISA in vollem Gange sind. So nahm das LISA-Konsortium die ersten Ergebnisse der Simulationen mit grossem Interesse auf. Die Physikgemeinde sieht in diesem zusätzlichen Nutzen der Gravitationswellenbeobachtung durch LISA eine vielversprechende Perspektive für eine der grössten zukünftigen europäischen Raumfahrtmissionen, die in rund 15 Jahren starten soll: Sie könnte Kosmologie und Teilchenphysik verbinden – vom unglaublich Grossen bis ins unvorstellbar Kleine. (UZH/mc/pg)

LISA

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert